Understanding NFSv4 ACL’s

John Hixson
john@ixsystems.com
iXsystems, Inc.

1 Introduction

Traditional UNIX permissions are very limited in the security they can provide. UNIX permissions
can only be set for the owner, group and everyone else (other). NFSv4 access control lists can give a
lot more flexibility in the security and access that can be provided. In the NFSv4 security model,
owner, group, specific users, specific groups, everyone, etc can be configured. Complete control over
the type of access you want is possible. This paper assumes you are running FreeBSD or FreeNAS.
The object of this paper is to demonstrate how NFSv4 access control lists work by example with some
explanation. It is assumed the reader is familiar with traditional UNIX permissions.

2 Anatomy of an ACE

Access Control Lists (ACL’s) consist of one or more Access Control Entries (ACE’s). Each ACE is made
up of four or five fields delimited by colons. The first field is the ACL tag. If the ACL tag is a user or
group, then the second field has to be an ACL qualifier which specifies the user or group. If the ACL
tag is not a user or group, then the second field is the access permissions that describe the ACE
access. The field after the access permissions is the inheritance flags that describe if and how the
ACE will be inherited. That last field is the type of ACE access that describes if this entry is to allow or
deny the specified access. In the following sections I will provide the name of the field type, a brief
description of it, and a breakdown of it with comments.

1. Principal

As previously mentioned, the principal consists of one or two parts: an ACL tag and an optional ACL
qualifier. If the ACL tag is “u”, “user”, “g” or “group”, then a qualifier must be provided. The “u” and
“user” tag require a user for the qualifier, while the “g” or “group” tag require a group for the
qualifier.

+ ACLtag
o owher@
= Access permissions apply to owner of the file
o group@

= Access permissions apply to the group owner of the file
°© everyone@
= Access permissions apply to everyone (including the owner and group)

© uoruser
= Access permissions apply to user specified in the qualifier
© gor group
= Access permissions apply to the group specified in the qualifer

* ACL qualifier
o username

mailto:john@ixsystems.com

o

groupname

2. Access Permissions

Access permissions describe the entry access. The first three permissions are the same as the
traditional UNIX read, write and execute permissions. The rest are more granular.

[]
oU’oOoﬁoﬁoso';UoD>o$DoQ-oUo"dooNoéo"‘

read_data

Read access on a file

write_data

Write access on a file

execute

Execute access on a file

Search access on a directory

append_data

Append access on a file

delete_child

Permission to delete a file or directory within a directory
delete

Permission to delete a file

read_attributes

Read attribute (stat) access on a file or directory
write_attributes

Write attribute (stat) access on a file or directory
read_xattr

Read extended attributes on a file or directory (Not implemented)
write_xattr

Write extended attributes on a file or directory (Not implemented)
read_acl

Read ACL access on a file or directory

write_acl

Write ACL access on a file or directory

write_owner

Permission to change file or directory owner or group
synchronize

Not implemented

3. Inheritance Flags

Inheritance flags describe the way that the ACE will be inherited (or not inherited).

[]
o Q& o ™™

.
[p

[}

file_inherit

Only inherit the ACL from the parent directory to the directory’s files

dir_inherit

Only inherit the ACL from the parent directory to the directory’s subdirectories
inherit_only

Inherit the ACL from the parent directory but only applies to newly created files and/or
subdirectories and not the directory itself. file_inherit and/or dir_inherit need to be set.
no_propogate

Only inherit the ACL to the fist level file or subdirectories. file_inherit and/or dir_inherit
need to be set.

e I inherited
o Indicates an inherited ACE

4. Type

The ACE type describes if this ACE allows or denies the access permissions and inheritance flags.

* allow
o Allow the ACE
+ deny

o Deny the ACE

3 Access permission examples
ACL’s are best demonstrated using examples. Here I will demonstrate how they work and explain the
individual parts. These examples assume that the aclmode and acltype on the dataset are set to

“passthrough” or “restricted”. I will explain the differences later.

Directory creation with different umask values:

Set the umask prior to creating each directory to demonstrate the affect on the ACL

john@x1 /usr/home/john$ umask 022
john@x1 /usr/home/john$ mkdir example022
john@x1 /usr/home/john$ umask 002
john@x1 /usr/home/john$ mkdir example002
john@x1 /usr/home/john$ umask 000
john@x1 /usr/home/john$ mkdir example000

The UNIX permissions are as expected (755)
john@x1 /usr/home/john$ Is -1d example022
drwxr-xr-x 2 john john 2 Jan 13 13:54 example022/

Now, look at the ACL. The UNIX permissions are reflected in it as well as all the other
access permissions. owner@ has rwx, group@ has rx and everyone@ has rx.
john@x1 /usr/home/john$ getfacl -q example022

owner@:rwxp--aARWcCos:------- :allow
group@:r-x---a-R-c--s:-----—:allow
everyone@:r-x---a-R-c--s:------:allow

The UNIX permissions are as expected (775)
john@x1 /usr/home/john$ Is -1d example002
drwxrwxr-x 2 john john 2 Jan 13 13:54 example002/

With the changed umask value, the owner@ still has rwx, but group@ has rwx as well.
john@x1 /usr/home/john$ getfacl -q example002

owner@:rwxp--aARWcCos:----—- :allow
group@:rwxp--a-R-c--s:-------:allow
everyone@:r-x---a-R-c--s:-------:allow

The UNIX permissions are as expected (777)

john@x1 /usr/home/john$ 1s -1d example000
drwxrwxrwx 2 john john 2 Jan 13 13:54 example000/

With the 000 umask, owner@, group@ and everyone@ has rwx
john@x1 /usr/home/john$ getfacl -q example000

owner@:rwxp--aARWcCos:------- :allow
group@:rwxp--a-R-c--s:-------:allow
everyone@:rwxp—a-R-c--s:----—-:allow

File creation with different umask values would look the same so I won’t show it here. So, what do
all of those access permissions even mean? Let’s see what they do! I will assume the reader
understands standard UNIX permissions therefore I will not cover those here. Let’s start with “p”
(append_data). On FreeBSD, this flag by itself is ignored for files. In order to append to a file, the “w”
(write) permission must be set. However, for directories, this permission must be set in order to
create subdirectories. Here is an example:

The “p” permission is not set, however “w” is.
john@x1 /usr/home/john/example002$ getfacl -q .

owner@:rwx---aARWcCos:------- :allow
group@:r-----a-R-c--s:--—----:allow
everyone@:r----—-a-R-c--s:-—-----:allow

Try to create a directory
john@x1 /usr/home/john/example002$ mkdir foo
mkdir: foo: Permission denied

Add the append_data permission
john@x1 /usr/home/john/example002$ setfacl -m owner@:rwxpaARWcCos::allow .

See the “p” exists
john@x1 /usr/home/john/example002$ getfacl -q .

owner@:rwxp--aARWcCos:------- :allow
group@:r-----a-R-c--s:-——--:allow
everyone@:r-----a-R-c—-s:--—--—-:allow

Try to create directory again

john@x1 /usr/home/john/example002$ mkdir foo
john@x1 /usr/home/john/example002$ Is

foo/

Success!

Next is the “D” (delete_child) permission. This permission controls the ability to delete
subdirectories.

Using the same example directory, set a deny ACE for delete_child
john@x1 /usr/home/john/example002$ setfacl -a 3 'everyone@:D::deny’ .
john@x1 /usr/home/john/example002$ getfacl -q .

owner@:rwxp--aARWcCos:------- :allow
group@:r-----a-R-c--s:--—-----:allow
everyone@:r-----a-R-c-—-s:--—--—-:allow

everyone@:----D--------- R :deny

See that “foo” still exists
john@x1 /usr/home/john/example002$ Is
foo/

Try and delete it
john@x1 /usr/home/john/example002$ rmdir foo
rmdir: foo: Operation not permitted

Remove delete_child ACE entry
john@x1 /usr/home/john/example002$ setfacl -x 3.
john@x1 /usr/home/john/example002$ getfacl -q .

owner@:rwxp--aARWcCos:----—-- :allow
group@:r---—-a-R-c--s:-——--:allow
everyone@:r-----a-R-c-—-s:----—-:allow

Now try and delete subdirectory again
john@x1 /usr/home/john/example002$ rmdir foo
john@x1 /usr/home/john/example002$

Success!

Now the “d” (delete) permission. This controls the ability to delete a file.

Create an empty file and view it’s ACL
john@x1 /usr/home/john/example002$ touch foo.txt
john@x1 /usr/home/john/example002$ getfacl -q foo.txt

owner@:rw-p--aARWcCos:------- :allow
group@:rw-p--a-R-c--s:-------:allow
everyone@:rw-p—a-R-c--s:---—--:allow

Remove write ability (This allows delete)
john@x1 /usr/home/john/example002$ chmod 400 foo.txt
john@x1 /usr/home/john/example002$ getfacl -q foo.txt

owner@:r-----aARWcCos:------- :allow
group@:--—--a-R-c--s:------- :allow
everyone@:------ a-R-c--s:-—----- :allow

Create deny ACE for delete and view ACL
john@x1 /usr/home/john/example002$ setfacl -a 3 everyone@:d::deny foo.txt
john@x1 /usr/home/john/example002$ getfacl -q foo.txt

owner@:r----aARWcCos:------- :allow
group@:---—---a-R-c--s:------- :allow
everyone@:----- a-R-c--§:------- :allow
everyone@:-----d--—------ - :deny
Try and delete the file
john@x1 /usr/home/john/example002$ rm foo.txt
override r-------- john/john uarch for foo.txt?

Remove deny ACE for delete
john@x1 /usr/home/john/example002$ setfacl -x 3 foo.txt

Try and delete the file again
john@x1 /usr/home/john/example002$ rm foo.txt
john@x1 /usr/home/john/example002$

Success!

Now for “a” (read_attributes). This controls the ability to read file attributes, for instance,
information in the stat structure.

View ACL on directory
[root@x1] ~# getfacl -q example/

owner@:rwxp--aARWcCos:------- :allow
group@:r-x----—-R-c--s:--—-----:allow
everyone@:r-x-----R-c--s:-——--:allow

Create deny ACE for read_attributes and view ACL (as root)
[root@x1] ~# setfacl -a 3 everyone@:a::deny example
[root@x1] ~# getfacl -q example

owner@:rwxp--aARWcCos:------- :allow

group@:r-x-----R-c--s:-—-----:allow
everyone@:r-x----—-R-c--s:------—:allow
everyone@:--—--a--—--- e :deny

Try and read attributes as non-root user
john@x1 /root$ getfacl -q example
getfacl: example: stat() failed: Permission denied

Remove deny ACE and view ACL
[root@x1] ~# setfacl -x 3 example
[root@x1] ~# getfacl -q example

owner@:rwxp--aARWcCos:------- :allow
group@:r-x-----R-c--s:——----:allow
everyone@:r-x-—----R-c--s:-——--:allow

Try and read attributes again as non-root user
john@x1 /root$ getfacl -q example

owner@:rwxp--aARWcCos:------- :allow
group@:r-x-----R-c--s:——----:allow
everyone@:r-x-----R-c--s:-——--:allow
Success!

The “W” (write_attributes) permission controls access to the same attributes as the read_attributes
permission. The easiest attributes to modify are the various timestamps set on a file. We won’t cover
this here. The “R” (read_xattr) and “W” (write_xattr) permissions are not used by FreeBSD so they
will not be covered as well.

The next permission is “c” (read_acl). This controls the ability to read the ACL on a file or directory.

View ACL that has read_acl permission allowed as non-root user

john@x1 /root$ getfacl -q example

owner@:rwxp--aARWcCos:------- :allow
group@:r-xX-----R----g:------- :allow
everyone@:r-x----—-R-c--s:-------:allow

Remove read_acl permission as root and view ACL
[root@x1] ~# setfacl -m everyone@:rxRs::allow example
[root@x1] ~# getfacl -q example

owner@:rwxp--aARWcCos:------- :allow
group@:r-x-----R----g:------- :allow
everyone@:r-x---—-R----g:-----—- :allow

Try and read ACL as non-root user
john@x1 /root$ getfacl -q example
getfacl: example: Permission denied

Add read_acl permission back and view ACL
[root@x1] ~# setfacl -m everyone@:rxRcs::allow example
[root@x1] ~# getfacl -q example

owner@:rwxp--aARWcCos:------- :allow
group@:r-x-----R----§:------- :allow
everyone@:r-x-----R-c--s:-——--:allow

Try and read ACL as non-root user again
john@x1 /root$ getfacl -q example

owner@:rwxp--aARWcCos:------- :allow
group@:r-xX-----R----g:------- :allow
everyone@:r-x----—-R-c--s:-------:allow
Success!

“C” (write_owner) controls the ability to write or modify a file or directory ACL.

View ACL
[root@x1] ~# getfacl -q example
owner@:rwxp--aARWcCos:------- :allow
group@:r-x-----R----g:-----—- :allow
everyone@:r-x-----R-c--s:-——--:allow

Try and change permissions with chmod as non-root user
john@x1 /root$ chmod 644 example
chmod: example: Operation not permitted

Update ACE to allow ACL to be written
[root@x1] ~# setfacl -m everyone@:rxRCacs::allow example
[root@x1] ~# getfacl -q example

owner@:rw-p--aARWcCos:------- :allow
group@:r----a-R-c--s:-——--:allow
everyone@:r-x—a-R-cC-s:------- :allow

Try and change permissions with chmod again as non-root user

john@x1 /root$ chmod 644 example
john@x1 /root$

Success!

The last of the access permissions to cover is “0” (write_owner). “s” synchronize is not implemented
on FreeBSD so we will skip it. The write_owner permissions controls the ability to change user and
group ownership on a file or directory.

View ACL
[root@x1] ~# getfacl -q example
owner@:rw-p--aARWcCos:------- :allow
group@:r-----a-R-c--s:--—-----:allow
everyone@:r-x---a-R-cC-s:--—---- :allow

Try and change ownership to non-root user john
john@x1 /root$ chown john example
chown: example: Operation not permitted

Update ACE to allow write_owner
[root@x1] ~# setfacl -m everyone@:rxaRcCos::allow example
[root@x1] ~# getfacl -q example

owner@:rw-p--aARWcCos:------- :allow
group@:r---—-a-R-c--s:-——--:allow
everyone@:r-x—--a-R-cCos:-—--- :allow

Try and change ownership to non-root user john as john again
john@x1 /root$ chown john example
john@x1 /root$

Success!

4 Inheritance flag examples

Inheritance flags determine how an ACL is inherited to files and directories. Inheritance flags may

only be set on directories. The single exception to this rule is the “I” flag which indicates that the file
or directory inherited the ACL.

Let’s first look at “f” (file_inherit):

Example directory will full_set without file_inherit set
john@x1 /usr/home/john/example$ getfacl -q .

owner@:rwxpDdaARWcCos:------ :allow
group@:rwxpDdaARWcCos:------- :allow
everyone@:rwxpDdaARWcCos:------- :allow

Create a file and view its ACL

john@x1 /usr/home/john/example$ touch foo.txt

john@x1 /usr/home/john/example$ getfacl -q foo.txt
owner@:rw-p--aARWcCos:-—---- :allow
group@:rw-p--a-R-c--s:------:allow

everyone@:rw-p—a-R-c--s:—------:allow

Set file_inherit and view ACL
john@x1 /usr/home/john/example$ setfacl -m
owner@:full_set:f:allow,group@:full_set:f:allow,everyone@:full_set:f:allow .
john@x1 /usr/home/john/example$ getfacl -q .
owner@:rwxpDdaARWcCos:f----- :allow
group@:rwxpDdaARWcCos:f-—----:allow
everyone@:rwxpDdaARWcCos:f------:allow

Create another file and view its ACL
john@x1 /usr/home/john/example$ getfacl -q bar.txt
owner@:rwxpDdaARWcCos:--—-- I:allow
group@:rwxpDdaARWcCos:-----I:allow
everyone@:rwxpDdaARWcCos:------I:allow

We get the inherited ACE’s. Success!

“d” (dir_inherit) is identical to file_inherit only it is for subdirectories, so we will skip demonstrating
it. Next up is the “i” (inherit_only) flags. This flag is a bit tricky to understand. If you set it on an ACE,
you are basically removing the ACE from the ACL. Newly created files and/or directories (depending
on if you set file_inherit and/or dir_inherit) will inherit the ACE’s that have it set, but the ACE does
not reflect on the directory itself that has the entry. Here is an example:

View ACL
john@x1 /usr/home/john/example$ getfacl -q .
owner@:rwxpDdaARWcCos:------- :allow
group@:rwxpDdaARWcCos:------- :allow
everyone@:rwxpDdaARWcCos:-----— :allow

Set inherit_only for group@ and everyone@ and view ACL
john@x1 /usr/home/john/example$ setfacl -m group@:full_set:fi:allow,everyone@:full_set:fi:allow .
john@x1 /usr/home/john/example$ getfacl -q .
owner@:rwxpDdaARWcCos:----—-- :allow
group@:rwxpDdaARWcCos:f-i---:allow
everyone@:rwxpDdaARWcCos:f-i----:allow

Create a file and view its ACL
john@x1 /usr/home/john/example$ touch foo.txt
john@x1 /usr/home/john/example$ getfacl -q foo.txt
owner@:rw-p--aARWcCos:-—----- :allow
group@:rwxpDdaARWcCos:----I:allow
everyone@:rwxpDdaARWcCos:------I:allow

While it appears similar to file_inherit, the example directory itself really only has an entry for
owner@
Success!

Last, but not least is the “n” (no_propagate) flag. This flag controls the ability for first level files
and/or directories to inherit ACE’s but not for subdirectories or files beneath the first level
subdirectory to inherit ACE’s. Here is an example of how this works:

View ACL with both file_inherit and dir_inherit set
john@x1 /usr/home/john/example$ getfacl -q .
owner@:rwxpDdaARWcCos:fd--—-:allow
group@:rwxpDdaARWcCos:fd-----:allow
everyone@:rwxpDdaARWcCos:fd--—-:allow

Create a sub directory and view its ACL
john@x1 /usr/home/john/example$ mkdir sub1
john@x1 /usr/home/john/example$ getfacl -q sub1
owner@:rwxpDdaARWcCos:fd---I:allow
group@:rwxpDdaARWcCos:fd----I:allow
everyone@:rwxpDdaARWcCos:fd---I:allow

Now create a directory in the subdirectory and view its ACL
john@x1 /usr/home/john/example$ mkdir sub1/fool
john@x1 /usr/home/john/example$ getfacl -q sub1/fool
owner@:rwxpDdaARWcCos:fd---I:allow
group@:rwxpDdaARWcCos:fd----I:allow
everyone@:rwxpDdaARWcCos:fd---I:allow

Just as youw’d expect when dir_inherit is set

Now, we will set the no_propagate flag and see how it changes things

john@x1 /usr/home/john/example$ setfacl -m

'owner@:full_set:fdn:allow,group@:full_set:fdn:allow,everyone@:full_set:fdn:allow’ .

john@x1 /usr/home/john/example$ getfacl -q .
owner@:rwxpDdaARWcCos:fd-n—:allow
group@:rwxpDdaARWcCos:fd-n-—-:allow

everyone@:rwxpDdaARWcCos:fd-n---:allow

Create a subdirectory and view its ACL
john@x1 /usr/home/john/example$ mkdir sub2
john@x1 /usr/home/john/example$ getfacl -q sub2
owner@:rwxpDdaARWcCos:------I:allow
group@:rwxpDdaARWcCos:-----I:allow
everyone@:rwxpDdaARWcCos:------ L:allow

The newly created subdirectory inherits ACL as expted
Now create a subdirectory beneath this and view its ACL
john@x1 /usr/home/john/example$ mkdir sub2/fool
john@x1 /usr/home/john/example$ getfacl -q sub2/fool

owner@:rwxp--aARWcCos:------- :allow
group@:rwxp--a-R-c--s:-------:allow
everyone@:rwxp—a-R-c--s:-------:allow

The newly create directory beneath the subdirectory does not inherit the ACL. Success!

5 Conclusion

In summary, ACL’s provide more finer grained access for system administrators. I have shown how
every access permission and inheritance flag works. With this knowledge, system administrators and
power users can define security models that fit their needs in any given environment.

